Psychological Research: Crash Course Psychology #2


So how do we apply the scientific method to psychological research? Lots of ways, but today Hank talks about case studies, naturalistic observation, surveys and interviews, and experimentation. Also he covers different kinds of bias in experimentation and how research practices help us avoid them.


Transcript Provided by YouTube:

00:00
Can week-old pizza cause psychedelic hallucinations? Does coffee make you smarter? Or does it just
00:04
make you do dumb stuff faster?
00:05
Like a bunch of psychology itself, questions like this can seem pretty intuitive. I mean,
00:09
people may not be the easiest organisms to understand, but you’re a person, right? So
00:13
you must be qualified to draw, like, some conclusions about other people and what makes
00:17
them tick.
00:18
But it’s important to realize that your intuition isn’t always right. In fact, sometimes it
00:23
is exactly wrong, and we tend to grossly underestimate the dangers of false intuition. If you have
00:28
an idea about a person and their behavior that turns out to be right, that reinforces
00:32
your trust in your intuition. Like if one of my buddies, Bob, begins eating that deep-dish
00:36
pizza that’s been in the fridge for the past week but he eats it anyway and soon starts
00:40
to wig out, I’ll say “Dude, I told you so”. But if I’m wrong and he’s totally fine, I
00:45
probably won’t even think about it ever again.
00:48
This is known as ‘Hindsight Bias” or the “I-Knew-It-All-Along” phenomenon. This doesn’t mean the common sense
00:53
is wrong, it just means that our intuitive sense more easily describes what just happened,
00:58
than what will happen in the future. Another reason you can’t blindly trust your intuition
01:02
is your natural tendency toward overconfidence. Sometimes, you just really, really feel like
01:08
you’re right about people when actually you’re really, really wrong. We’ve all been there.
01:13
We also tend to perceive order in random events, which can lead to false assumptions. For example,
01:18
if you flip a coin five times you have equal chances of getting all tails as you do getting
01:23
alternating heads and tails. But we see the series of five tails as something unusual,
01:28
as a streak, and thus giving that result some kind of meaning that it very definitely does
01:32
not have.
01:33
That is why we have the methods and safe-guards of psychological research and experimentation,
01:38
and the glorious process of scientific inquiry. They help us to get around these problems
01:43
and basically save the study of our minds from the stupidity of our minds. So I hope
01:48
that it won’t be a spoiler if I tell you now that pizza won’t make you trip, and coffee
01:53
doesn’t make you smart. Sorry.
02:01
[Intro]
02:03
In most ways psychological research is no different than any other scientific discipline,
02:10
like step one is always figuring out how to ask general questions about your subject and
02:15
turn them into measurable, testable propositions. This is called operationalizing your questions.
02:20
So you know how the scientific method works — it starts with a question and a theory,
02:24
and I don’t mean theory in the sense of like, a hunch that say, a quad-shot of espresso
02:29
makes you think better. Instead, in science a theory is what explains and organizes lots
02:34
of different observations and predicts outcomes. And when you come up with a testable prediction,
02:39
that’s your hypothesis.
02:40
Once your theory and hypothesis are in place, you need a clear and common language to report
02:45
them with, so for example, defining exactly what you mean by “thinking better” with your
02:48
espresso hypothesis will allow other researchers to replicate the experiment. And replication
02:54
is key. You can watch a person exhibit a certain behavior once, and it won’t prove very much,
02:59
but if you keep getting consistent results, even as you change subjects or situations,
03:03
you’re probably on to something.
03:05
This is a problem with one popular type of psychological research: case studies, which
03:09
take an in-depth look at one individual. Case studies can sometimes be misleading, because
03:14
by their nature, they can’t be replicated, so they run the risk of over-generalizing.
03:18
Still, they’re good at showing us what CAN happen, and end up framing questions for more
03:22
extensive and generalizable studies. They’re also often memorable and a great story telling
03:27
device psychologists use to observe and describe behavior. Like, say the smell of coffee makes
03:32
Carl suddenly anxious and irritable — that obviously doesn’t mean that it has that same
03:36
effect on everyone. In fact, Carl has terrible memories associated with that smell, and so
03:41
his case is actually quite rare. Poor Carl. But you would still have to look at lots of
03:46
other cases to determine that conclusively.
03:48
Another popular method of psychological research is naturalistic observation, where researchers
03:52
simply watch behavior in a natural environment, whether that’s chimps poking ant-hills in
03:57
the jungle, kids clowning in a classroom or drunk dudes yelling at soccer games. The idea
04:02
is to let the subjects just do their thing without trying to manipulate or control the
04:05
situation. So yeah, basically just spying on people. Like case studies, naturalistic
04:10
observations are great at describing behavior, but they’re very limited in explaining it.
04:15
Psychologists can also collect behavioral data using surveys or interviews, asking people
04:19
to report their opinions and behaviors. Sexuality researcher Alfred Kinsey famously used this
04:23
technique when he surveyed thousands of men and women on their sexual history and published
04:28
his findings in a pair of revolutionary texts, Sexual Behavior in the Human Male and Female
04:34
respectively.
04:35
Surveys are a great way to access consciously held attitudes and beliefs, but how to ask
04:39
the questions can be tricky; subtle word choices can influence results. For example more forceful
04:44
words like “ban” or “censor” may elicit different reactions than “limit” or “not allow”. Asking
04:50
“Do you believe in space aliens?” is a much different question than “Do you think that
04:54
there is intelligent life somewhere else in the universe?” It’s the same question, but
04:57
in the first the subject might assume you mean aliens visiting earth, and making crop
05:01
circles and abducting people and poking them.
05:03
And if how you phrase surveys is important, so is who you ask. I could ask a room full
05:07
of students at a pacifist club meeting what they think about arms control, but the result
05:11
wouldn’t be a representative measure of where students stand, because there’s a pretty clear
05:15
sampling bias at work here. To fairly represent a population, I’d need to get a random sample
05:20
where all members of the target group, in this case students, had an equal chance of
05:24
being selected to answer the question.
05:26
So once you’ve described behavior with surveys, case studies, or naturalistic observation,
05:30
you can start making sense out of it, and even predict future behavior. One way to do
05:35
that is to look at one trait or behavior is related to another, or how they correlate.
05:39
So let’s get back to my buddy Bob who seems to think that his refrigerator is actually
05:43
some kind of time machine that can preserve food indefinitely. Let’s say that Bob has
05:47
just tucked into a lunch of questionable leftovers, pizza that may very well have had a little
05:50
bit of fungus on it. But he was hungry, and lazy, and so he doused it in Sriracha. Suddenly,
05:56
he starts seeing things: green armadillos with laser beam eyes.
05:59
From here we could deduce that eating unknown fungus predicts hallucination, that’s a correlation.
06:04
But correlation is not causation. Yes, it makes sense that eating questionable fungus
06:09
would cause hallucinations, but it’s possible that Bob was already on the verge of a psychotic
06:13
episode, and those fuzzy leftovers were actually benign. Or there could be an entirely different
06:18
factor involved, like maybe he hadn’t slept in 72 hours, or had an intense migraine coming
06:23
on, and one of those factors caused his hallucinations. It’s tempting to draw conclusions from correlations,
06:28
but it’s super-important to remember that correlations predict the possibility of cause-and-effect
06:33
relationships; they cannot prove them.
06:35
So we’ve talked about how to describe behavior without manipulating it and how to make connections
06:40
and predictions from those findings. But that can only take you so far; to really get to
06:44
the bottom of cause-and-effect behaviors, you’re gonna have to start experimenting.
06:48
Experiments allow investigators to isolate different effects by manipulating an independent
06:52
variable, and keeping all other variables constant, or as constant as you can. This
06:57
means that they need at least two groups: the experimental group, which is gonna get
07:01
messed with, and the control group, which is not gonna get messed with.
07:05
Just as surveys use random samples, experimental researchers need to randomly assign participants
07:09
to each group to minimize potential confounding variables, or outside factors that may skew
07:14
the results. You don’t want all grumpy teenagers in one group and all wealthy Japanese surfers
07:18
in the other; they gotta mingle.
07:19
Now sometimes one or both groups are not informed about what’s actually being tested. For example,
07:25
researchers can test how substances effect people by comparing their effects to placebos,
07:29
or inert substances. And often, the researchers themselves don’t know which group is experimental
07:34
and which is control, so they don’t unintentionally influence the results through their own behavior,
07:39
in which case it’s called, you guessed it, a double blind procedure.
07:43
So let’s put these ideas into practice in our own little experiment. Like all good work,
07:47
it starts with a question. So the other day my friend Bernice and I were debating. We
07:50
were debating caffeine’s effect on the brain. Personally, she convinced that coffee helps
07:55
her focus and think better, but I get all jittery like a caged meerkat and can’t focus
07:59
on anything. And because we know that overconfidence can lead you to believe things that are not
08:03
true, we decided to use some critical thinking.
08:05
So let’s figure out our question: “Do humans solve problems faster when given caffeine?”
08:10
Now we gotta boil that down into a testable prediction. Remember: keep it clear, simple,
08:15
and eloquent so that it can be replicated. “Caffeine makes me smarter” is not a great
08:19
hypothesis. A better one would be, say, “Adult humans given caffeine will navigate a maze
08:25
faster than humans not given caffeine.” The caffeine dosage is your independent variable,
08:29
the thing that you can change. So, you’ll need some coffee. Your result or dependent
08:33
variable, the thing that depends on the thing that you can change is going to be the speed
08:37
at which the subject navigates through this giant corn maze.
08:40
Go out on the street, wrangle up a bunch of different kinds of people and randomly assign
08:43
them into three different groups. Also at this point, the American Psychological Association
08:47
suggests that you acquire everyone’s informed consent to participate. You don’t want to
08:52
force anyone to be in your experiment, no matter how cool you think it is.
08:55
So the control group gets a placebo, in this case decaf. Experimental group one gets a
08:59
low dose of caffeine, which we’ll define at a 100 milligrams; just an eye opener, like,
09:03
a cup of coffee’s worth. Experimental group two gets 500 milligrams, more than a quad
09:08
shot of espresso dunked in a Red Bull. Once you dose everyone, turn them lose in the maze
09:12
and wait at the other end with a stopwatch.
09:14
All that’s left is to measure your results from the three different groups and compare
09:17
them to see if there were any conclusive results. If the highly dosed folks got through it twice
09:21
as fast as the low dose and the placebo groups, then Bernice’s hypothesis was correct, and
09:26
she can rub my face in it saying she was right all along, but really that would just be the
09:30
warm flush of hindsight bias telling her something she didn’t really know until we tested it.
09:35
Then, because we’ve used clear language and defined our parameters, other curious minds
09:39
can easily replicate this experiment, and we can eventually pool all the data together
09:43
and have something solid to say about what that macchiato was doing to your cognition–
09:48
or at least the speed at which you can run through a maze. Science: probably the best
09:52
tool that you have for understanding other people.
09:54
Thanks for watching this episode of Crash Course Psychology; if you paid attention you
09:57
learned how to apply the scientific method to psychological research through case studies,
10:01
naturalistic observation, surveys, and interviews and experimentation. You also learned about
10:06
different kinds of bias in experimentation and how research practices help us avoid them.
10:11
Thanks especially to our Subbable subscribers, who make this and all of Crash Course possible.
10:15
If you’d like to contribute to help us keep Crash Course going, and also get awesome perks
10:20
like an autographed science poster, or even be animated into an upcoming episode, go to
10:24
Subbable.com/CrashCourse to find out how.
10:27
Our script was written by Kathleen Yale and edited by Blake de Pastino and myself. Our
10:31
consultant is Dr. Ranjit Bhagwat. Our director and editor is Nicholas Jenkins, our script
10:36
supervisor is Michael Aranda, who is also our sound designer, and our graphics team
10:39
is Thought Café.


This post was previously published on YouTube.

Photo credit: Screenshot from video.